
Pat O’Sullivan

Mh4718 Week 4



Week 4

0.0.0.1 Storage of float type variables (contd.).
Recall that float values are converted to normalised scientific notation and
then stored in four bytes according to the scheme:

byte 4︷ ︸︸ ︷
********

byte 3︷ ︸︸ ︷
********

byte 2︷ ︸︸ ︷
********

byte 1︷ ︸︸ ︷
********

*
↓

sign bit

********
↓

8 bit exponent+127

***********************
↓

23-bit mantissa-1

0.0.0.2 Largest and smallest values.

The cases when all the exponent bits are all 1’s or all 0’s signals a change in
the storage rules.

Once the exponent reaches 11111111 the stored number is treated as infinity.
This is called overflow error.

The largest storable float is therefore:
01111111 01111111 11111111 11111111 i.e.
2127 × 1.11111111111111111111111 (mixed notation.) which is
2127(1 + 2−1 + 2−2 + ...........2−23) = 2127 + 2126 + ...........2104

= 2128 − 2104 = 340282346638528859811704183484516925440.0

The most negative number is then 11111111 01111111 11111111 11111111 which
is just the negative of this number.

1



2 Mh4718 Numerical Analysis

When all the exponent bits are 0 the storage rules change in order to enable
the storage of smaller numbers (i.e. closer to 0.)

The last case in which normal rules apply at the lower end of the range is:
*0000000 10000000 00000000 00000000 i.e. ±2−126.
Once the exponent reaches 00000000 the exponent is held at -126 and the man-
tissa is treated as 0.******** rather than 1.********* This enables more small
numbers to be stored.

The smallest non-zero number is:
00000000 00000000 00000000 00000001 i.e.
2−126 × 0.00000000000000000000001 (mixed notation.)
which is 2−126 × 2−23 = 2−149

Attempts to store numbers smaller than this results in zero being stored. This
is called underflow error.

The following program illustraes underflow error. Note that the program treats
2−150 as 0.

#include<iostream>
#include<cmath>
using namespace std;

void main()
{ //This program demonstrates underflow error

int p =0;
float y=1;
do
{

p--;
y=y/2;
cout<<y<<" =2^"<<p<<endl;

}while(y>0);

}

0.0.1 Round Off error

Round off error occurs when a number is within the storable range (i.e. not too
big or not too small) but all the bits in the mantissa cannot be stored because
the mantissa is too long.

This is obviously the case when a number has an infinite binary decimal repre-



Week 4 3

sentation e.g. 0.2 but it can also happen for a number which has a finite number
of digits.

Example 0.1

(i) 0.2 in binary is an infinite “decimal”:

0.001100110011................ = 1.1001100110011001100....× 2−3

That is the mantissa is infinitely long 1.1001100110011001100.... and the
exponent is 2−3.

This gives a biased exponent = 124 but we can only retain 23 of the infi-
nite digits after the decimal points.

(ii) The number 224 + 1 has binary representation

1

23 zeros︷ ︸︸ ︷
00000000000000000000000 1

In normalised scientific notation (mixed base) this is written as

1.

23 zeros︷ ︸︸ ︷
00000000000000000000000 1× 224

The biased exponent is thus 127+24= 151 but the mantissa-1 is

0.

23 zeros︷ ︸︸ ︷
00000000000000000000000 1

which has 24 decimal places and so is too long to be stored as a float.

If we simply dropped the mantissa digits which do not fit then there would be
a consistent undervaluing of all positive floats and overvaluing of all negative
floats. This could cause serious accumulation of errors. To avoid this, C++
employs rounding rules which are designed to have some chance of balancing
out over many calculations. The rounding rules are as follows:

1. If the digit in the 24th decimal place is 0 (followed by some non-zero digits)
then all remaining digits are dropped and no further action is taken. The
stored number is then clearly too small.

2. If the digit in the 24th decimal plase is 1 ( followed by some non-zero digits)
then all remaining digits are dropped and a 1 is added in the 23rd decimal
place. (If the 23rd decimal place is already 1 then there will, of course, be
a knock on effect from carried 1’s.) The stored number is then too big.



4 Mh4718 Numerical Analysis

3. If the digit in the 24th decimal place is a solitary 1 i.e. followed by all zeros,
then it is simply chopped if digit 23 is 0 but if digit 23 is 1 then a 1 is added
into the 23rd decimal place.

Example 0.2

(i) Applying these rules to the storage of 0.2 we have:

mantissa = 1.

23 places︷ ︸︸ ︷
1001100110011001100110011001100 . . .

which is rounded to

1.

23 places︷ ︸︸ ︷
10011001100110011001101

And so what is stored in the 4 bytes is:

00111110 01001100 11001100 11001101

that is

0
↑

sign bit

biased exponent︷ ︸︸ ︷
01111100

mantissa-1︷ ︸︸ ︷
10011001100110011001101

that is

biased exponent = 124 and mantissa− 1 = 0.10011001100110011001101.

That is

exponent = −3, mantissa = 1.10011001100110011001101.

Therefore that value that is actually stored (in mixed notation) is

2−3 × 1.10011001100110011001101.

Converting this to base ten notation and grouping powers of 2 we get:

2−3×1.10011001100110011001101 =
1
23

(
3
2

+
3
25

+
3
29

+
3

213
+

3
217

+
3

221
+

1
223

)
=

3
24

+
3
28

+
3

212
+

3
216

+
3

220
+

3
224

+
1

226

The following program proves that the exact value for a float type variable
assigned the value 0.2 is indeed

3
24

+
3
28

+
3

212
+

3
216

+
3

220
+

3
224

+
1

226



Week 4 5

#include <iostream>
#include <cmath>
#include <iomanip>
using namespace std;
void main()
{

float x =0.2;
float y=3*(pow(2.0,-4)+pow(2.0,-8)+pow(2.0,-12)+pow(2.0,-16)

+pow(2.0,-20)+pow(2.0,-24))+pow(2.0,-26);
cout<<setprecision(30);
cout<<x<<endl;
cout<<y<<endl;
if(x==y)
{

cout<<"They are equal."<<endl;
}
else
{

cout<<"They are not equal."<<endl;
}

}

The values stored under y and x in the above program are the same.

In order to get a more concise expression for the actual stored value
2−3 × 1.10011001100110011001101 we note that

2−3 × 1.10011001100110011001101

= 0.2−

chopped
↓︷ ︸︸ ︷

2−3 × 0.0000000000000000000000011001100 . . . +

round up
↓

2−3 × 1
223

(That is, the value stored is 0.2 less the value which was chopped when
rounding, plus the value of the rounding-up digit.)

= 0.2− 2−3 × 0.

23 zeros︷ ︸︸ ︷
0000000000000000000000011001100 · · ·+ 2−3 × 1

223

= 0.2− 1
23
×

(
1

224
+

1
225

+
1

228
+

1
229

+ . . .

)
+

1
226

= 0.2− 1
23
×

(
3

225
+

3
229

+ . . .

)
+

1
226



6 Mh4718 Numerical Analysis

= 0.2− 1
23
×

3
225

1− 1
24

+
1

226

= 0.2
(

1 +
1

226

)
Therefore if we have the line

float x=0.2;

in a C++ program then the exact value assigned to x is not 0.2 but the

slightly bigger 0.2
(

1 +
1

226

)
.

The difference between the true value and the stored value is therefore
0.2× 1

226
=

1
226 × 5

. In base ten this is a decimal with 26 decimal places,

[25 log10 5] + 1 = 18 significant digits and thus 8 leading zeros.

(ii) If we have the line

float x=pow(2.0,24)+1;

in a C++ program rounding rules are applied to the storage of 224 + 1 as
follows:

224 + 1 = 1

23 zeros︷ ︸︸ ︷
00000000000000000000000 1.

In normalised scientific notation (mixed base) this is written as

1.

23 zeros︷ ︸︸ ︷
00000000000000000000000 1× 224

The mantissa-1 is

0.

23 zeros︷ ︸︸ ︷
00000000000000000000000 1

which has 24 decimal places and so is too long to be stored as a float.
When rounding rules are applied we see that the only excess digit is a
solitary 1 which is preceded by a 0 and so it is simply dropped. The value
that is actually stored then is

1.

23 zeros︷ ︸︸ ︷
00000000000000000000000× 224 = 224.

Notice that the 1 is never added to 224.



Week 4 7

(iii) If we have the line

float x=pow(2.0,24)+3;

in a C++ program, rounding rules are applied to the storage of 224 + 3
as follows:

224 + 3 = 1

23 zeros︷ ︸︸ ︷
00000000000000000000001 1.

In normalised scientific notation (mixed base) this is written as

1.

23 zeros︷ ︸︸ ︷
00000000000000000000001 1× 224

The mantissa-1 is

0.

23 zeros︷ ︸︸ ︷
00000000000000000000001 1

which has 24 decimal places and so is too long to be stored as a float.
When rounding rules are applied we see that the only excess digit is a
solitary 1 which is preceded by a 1 and so 1 is added to the 23rd bit of
the mantiss and so the value that is actually stored then is

1.

23 zeros︷ ︸︸ ︷
00000000000000000000010× 224 = 224 + 4

which is too big.


